Quality demands of data in collaborative systems
Ion IVAN, Bucharest University of Economics
Cristian CIUREA, Bucharest University of Economics

Adrian VISOIU, Bucharest University of Economics

Mihai DOINEA, Bucharest University of Economics

Abstract. This paper describe the new concepts of data quality evaluation in collaborative systems. There are defined the quality characteristics of collaborative systems. It determines the types of entry data in citizen oriented software applications and procedures for their validation. It analyzes the effects developed by the efficient validation procedures.

Keywords: collaborative systems, citizen oriented software applications, data validation, validation procedures.

1. QUALITY CHARACTERISTICS OF COLLABORATIVE SYSTEMS
The quality characteristics of collaborative systems are an important subject of our days and an important part of the human activities is involved in this problem. The need to study the quality characteristics is done by fixing, at the beginning, the performance of a system which will be designed. The complexity of this subject, but also the huge number of the applications makes impossible to have a large presentation in a note, but we would underline some of the main aspects.

The quality is a main characteristic of a collaborative system and contains the followings properties: complexity, reliability, maintainability, functionality and stability.

The complexity is a measure for the interdependencies between components and their links and also for the diversity of different types of input and output constructions. This characteristic describes the density of fluxes between the components of the system. The complexity of the collaborative system generates a large number of various components. Based on that, a proper approach of the system quality is to analyze every component separately.

The system reliability is determined by analyzing the number of problems solved by the system and the total number of specified problems.

The maintainability is a process particular to software products that have a complex development process and that are intended to be used for a long time, meaning more than three years. In this category are included also products like the collaborative systems. Maintainability measures the effort needed to make modifications on the collaborative system in order to make it suited for current needs. This effort can be described as consumed time, number of modules modified, number of added modules and number of deleted modules.

The system functionality describes a set of functions and their specified properties. The functions are those that satisfy stated or implied needs.
When for each quality characteristic C1, C2, …, Cn are established the normal areas in which are enclosed, delimited like subintervals [bi, 1] with 0 < bi < 1, i=1..n, on represent on the nomogram the standard diagram of the collaborative system functionality:

[image: image1.png]
Figure 1. Functionality nomogram

Is defined the aggregate indicator of functionality, IF:

[image: image2.wmf]}

,

max{

}

,

min{

2

1

2

1

S

S

S

S

IF

=

,

where:

 S1 and S2 are the surfaces delimited in the figure 1;

C1 is the complexity;

C2 is the reliability;

C3 is the maintainability.

If HS = 0, then the collaborative system is working properly and very well and if HS = 1, the collaborative system is working very bad.

A collaborative system is defined through some form of construction like:

<α1, α2, α3, α4, α5, α6, α7>,
where:

α1 – activity;

α2 – location;

α3 – resources;

α4 – people;

α5 – energy resources;

α6 – procedures;

α7 – flows.

Starting from such a construction, the collaborative system stability is defined as a relationship between the elements α1, α2, α3, α4, α5, α6, α7.

The development of collaborative systems is accelerated, along with the wireless networks and, the quality characteristics become strictly related to the security characteristics.

2. THE CHARACTERISTICS OF THE CITIZEN ORIENTED SOFTWARE APPLICATIONS

The knowledge-based society suppose the growth at a very high level of human-computer interactions in order to solve the problems of citizens, such as:

· tax payments, to the state budget and local budgets;

· freight payments, ordered over the Internet or not;

· obtaining approvals;

· carrying out knowledge tests;

· training using e-learning software;

· book tickets and acquisitions;

· appointments in the audience;

· commands clothes, launched on the Internet;

· medical tests, to establish the group of blood or health status.
The citizen-oriented software applications differ from the others by the fact that are developed starting from the target group. The other applications started from the owner requirements. If a bank wants to develop a specific software application, then the application will be built on the basis of specifications developed by the bank. The new generation of software applications are built on the basis of the wishes of citizens. Are defined specifications that satisfy the citizen, the user, but not the owner.

For reservation and purchase of plane tickets, the steps forward are as follows: enter the site, choose and pay tickets online and, ultimately, obtain an electronic confirmation with the same value as a ticket purchased from a Agency.

Obtaining a particular type of permit is made as follows: access the site and select the category requested authorization, the payment will be made online, enter the cadastral database, analyzes the process in electronic way and receives authorization.

Banks made available to customers a service by which they conduct electronic confirmation, automatically, of the customer payments for certain customs offices in order to obtain the free of customs. For the electronic payments made by the client to customs offices, the bank deliver an electronic file, which is for the customs offices, the proof of the debt end by the customer. In this way, there is no need for submission by the customer, a copy of the green payment order on paper.

The cycle of development of an citizen-oriented application is as follows:

· the owner and the developer defines the target group of the application;

· are determined the objectives of the target group, in order to define the problem to solve;

· are developed specifications in order to meet the wishes of the target group;

· is writen code for the application development;

· is tested the application by the target group.

To the distributed software applications design is analyzed the target group, whereas the quality characteristics of those depend by the people who access defined resources, and which, by the satisfaction degree obtained after settling on-line problems, determine the further development of other applications.

3. ENTRY DATA IN CITIZEN ORIENTED SOFTWARE APPLICATIONS

The citizen-oriented applications are available on the Internet or into a network of computers used by the target group. These applications have a number of forms which allow the introduction of data and the selection of some values or options. In the selection of values or options, the list of selected items must be complete, that is to cover all the existing values for the selected field. For example, selecting the type of credit card is made from the following list: Visa, Mastercard, Maestro. There must be no situation in which a user hold one card other than those mentioned in the list of selected items.

The holder of a credit card is completed on a form through two fields, one in which introduces the last name, and the other which introduces the first name of the person. The values of the two fields are not comutative. Validation of these fields must include the introduction of three or more consecutive identical letters, in which case that name or surname is considered invalid.

Validation fields in which introduced free text, such as field for comments, involves the definition of a vocabulary of prohibited words. The text entered must not contain words or substrings from that vocabulary. Thus, it avoids filling obscene words in fields that contain free text.

A symposium contains sections themes, each section having a name and a list of keywords. Validation classification of an article in a given section requires that the title of the article contains words from the list of keywords such sections. In the field on the form for the abstract completion of that article shall be represented as a limit number of characters or number of words completed. It achieved thus validating the length of the entered text.

The forms have required and optional fields. The entry data are represented by strings of letters, calendar data, codes or numeric values. These data, with the completion of their, falling into the following categories:

· are correct and complete: on a form is C1, C2, …, Cn fields to fill; but each Ci field has a Vi field of values; the situation of correctly and completely appear when all Ci, i=1..n, fields belong from Vi, i=1..n vocabularies;

· is correct, but incomplete: in which case all C1, C2, …,Ci-1, Ci+1, ..., Cn fields belong from the Vi, i=1..n, vocabularies, but is missing the Ci field; in this case, the application generates messages that indicate what fields were not completed on the form, as in Figure 2:

[image: image3.png]
Figure 2. Incomplete entry data
· are complete, but incorrect: a situation in which all the fields are filled, but one or more fields do not belong the domain values; in this case, at every field is specified what is wrong filled, as in Figure 3:
[image: image4.png]
Figure 3. Incorrect entry data

At every test data recorder, if they were not placed correctly and in full, appears a list of errors and the data are not transmitted to the database.

The introduction of some fields into the form and the possibility of transmitting data, even if they are not complete, there must not be in a citizen-oriented software application.

4. VALIDATION PROCEDURES

Procedures are builded for validating data: alphabetic, numeric and correlations between fields. For each application are used standard procedures and the error messages should be very nuanced so as to help troubleshooting a breeze. These error messages must show to the user where and what is wrong. Such applications, in which is communicate exactly what the user has entered wrong, are easily implemented in a situation in which fields contain complete verifiable information that structure, such as the personal identification number, telephone number, email address, date calendar or bank card number. In the case in which the user has to complete free information, then the accuracy of error messages is more difficult to implement.

The presentation manner of the results of validation are as follows:

· displays a confusing message which specifies that are errors in data;

· on a different form than they have completed the data shows a list of errors stating the field and the nature of the error;

· the form in which data is completed, at the right of the fields wrong filled appears the error messages, colored in red.
The validation stage ensure the proper completion of information to be recorded and processed, eliminating the aberrant data or inconsistent with reality. The transmission stage assumes the achievement connection with the database and the actual recording of values in the database. The receiving feedback stage assumes the reception by the user of a complete response regarding the finality for its action, if the payment was made successfully, or if requested document was issued.

In the case of an Internet banking applications, after the user completes the data required to make a payment, when pressing the button "Approve", the payment status shall be transformed into "Approved by client". At an interval of several seconds, when the payment enter in the processing phase, its status changes to "Received by the bank". When the payment was made successfully, its status becomes "Approved by the bank", confirming to the user the finality of his action.

The data validation is classified in two types: simple validation and complex validation. The simple validation is useful for simple testing of a single isolated control located on a form. In most cases, it validates more controls placed on the same form and whose contained information is intercorelate. In this situation, it is about a cross or complex validation. An example of cross-validation refers the correlation between the average obtained by a student at a particular school exam with his school situation:

The C# source code, to simple validate the average in the interval [1, 10] and for the cross-validation of correlation between the average obtained with the school situation is as follows:

private void button1_Click(object sender, EventArgs e)

{

int average = Convert.ToInt32(textBox1.Text);

if (average < 1 || average > 10)

errorProvider1.SetError(textBox1,"Average outside the range 1-10");

else

if (average < 5 && comboBox1.Text=="Graduate")

{

errorProvider1.SetError(textBox1,"The average not correspond with the school situation");

errorProvider1.SetError(comboBox1,"The school situation not correspond with the average");

}

else

if (average >= 5 && comboBox1.Text=="Restant")

{

errorProvider1.SetError(textBox1,"The average not correspond with the school situation");

errorProvider1.SetError(comboBox1,"The school situation not correspond with the average");

}

else

{

errorProvider1.SetError(textBox1,"");

errorProvider1.SetError(comboBox1,"");

}

}

The Visual Studio has implemented for ASP.NET a series of controls to facilitate writing source code for validation of fields whose format is the default entry. One of these is called RegularExpressionValidator, which enables the validation of e-mail address, telephone numbers, internet address, postal code and the social security number.

There are more options for the data validation, namely:

· option 1: rigid validation, meaning that the data entered are validated field with the field and the user can not move forward until it completes correctly previous fields. This validation is accompanied by a reminder regarding the nature of the error in the form, like a text message or a sound signal;

· option 2: flexible validation on the form, displaying messages erroneous data;

· option 3: the form fields erroneous become red;

· option 4: on the form, after sending the data appear a list of errors.

Any of the four variants validation would apply, the application must solve a single problem: the information recorded in the database must be accurate and complete.

6. CONCLUSIONS
The field of collaborative systems is a domain that has many published papers and that has acquired in the last period a great volume of theoretical knowledge. The idea of citizen-oriented applications refers to an effective collaborative system in which people and equipment cooperate in order to achieve certain objectives. This is about Human-Human Interaction and Human-Computer Interaction. On-line citizen-oriented applications are accessed by a very large number of unhomogeneous users, which must spend as little time interaction with the application. Major problems arise from entering data errors. Therefore, applications must provide highly accurate information regarding the occurrence of mistakes and resolve them. The basic idea is that the user should end with the introduction of data in a few iterations.

New technology that will be defined will include:

· cycle stages of development;

· tools to take the new requirements;

· quality metrics;

· models for costs;

· systems of collecting data regarding the behavior;

· components for adapting the structure of the application;

· components for ensuring security;

· evaluating options for each stage of the product;

· local component optimization;

· refining components;

· action subordination to the target group requirements.

With this new technology will develop applications that will complement the citizen, the user becoming part of the system. The Human-Computer interaction is more powerful, the system is more efficient.
REFERENCES

Arba, R. (2005). Collaborative Electronic Marketplace. International Workshop Collaborative Support Systems in Business and Education, Editura Risoprint, Cluj-Napoca.

Ciurea, C. (2007). Metrici ale sistemelor colaborative financiare. Sesiunea cercurilor ştiinţifice studenţeşti din Academia de Studii Economice, Bucureşti.
Connolly, T., Begg, C. (2001). Baze de date: proiectare, implementare, gestionare. Editura Teora, Bucureşti.
Cooper, A. (1997). Proiectarea interfeţelor utilizator. Editura Tehnică, Bucureşti.
David, B., Delotte, O., Chalon, R., Tarpin-Bernard, F., Saikali, K. (2003). Patterns in Collaborative System Design, Development and Use. Laboratoire ICTT, Ecole Centrale de Lyon, France.

Dobrican, O. (2005). An Example of Collaborative System. International Workshop Collaborative Support Systems in Business and Education, Editura Risoprint, Cluj-Napoca.

Fraizer, C., Bond, J. (1998). Java API: manualul interfeţei de programare a aplicaţilor. Editura Teora, Bucureşti.

Gause, D., Weinberg, G. (2004). Exploring requirements quality before design. Dorset House Publishing, New York.

Ivan, I., Boja, C., Ciurea, C. (2007). Metrici ale sistemelor colaborative. Editura ASE, Bucureşti.
Ivan, I., Doinea, M. (2008). Aspecte privind optimizarea proceselor de autentificare în aplicaţii distribuite. Economia – Teorie şi aplicaţii.
Pressman, R. (1988). Software Engineering: A beginner’s guide. McGraw-Hill Publisher, New York.

Smeureanu, I., Dardala, M., Reveiu, A. (2004). Visual C#.NET. Editura CISON, Bucureşti.
Weinberg, G. (2007). Quality Software Management: Szstems Thinking. Dorset House Publishing, New York.

PAGE
1

_1282667820.unknown

