Open Source Science Journal Vol. 2, No. 3, 2010

Implementing an Encryption Algorithm in

Collaborative Multicash Servicedesk Application

Cristian CIUREA

Economic Informatics Department,

Academy of Economic Studies, Bucharest, Romania

cristian.ciurea@ie.ase.ro

Abstract: This paper describes an encryption algorithm for securing the users passwords saved in the database of Collaborative Multicash Servicedesk (CMS) application. A Triple Data Encryption Algorithm is used in order to protect the users’ credentials. The CMS application is presented in a collaborative banking system and a report regarding the problems solved by CMS users is generated. The CMS application is also protected against SQL injection in order to increase the data security. Metrics are built in order to evaluate the security level and quality characteristics of CMS application.
Keywords: encryption, algorithm, TDES, CMS, collaborative, application, system.

1. Types of encryption and compression algorithms

The encryption process involves the conversion of a message into a string that has no signification for someone that want to read it. The encryption process must be realized so that the string can be decoded back into the original message. There is a lot of encryption algorithms separated on different categories. The difference between encryption algorithms and compression algorithms must be clarified.

Data compression is the process of encoding information using fewer bits than an un-encoded representation would use, through use of specific encoding algorithms. Compression is useful because it helps reduce the consumption of important resources, like hard disk space or transmission bandwidth [1].

Encryption alone does not generally change the size of the data being protected, but on the other hand, the compression’s sole purpose is to change the size of the data being secured. The most known compression algorithms are RLE (Run Length Encoding), the Huffman algorithm, LZW (Lempel-Ziv-Welch), LZRW (Lempel-Ziv Ross Williams), Fano-Shannon.

In cryptography field, the MD5 (Message-Digest 5) encryption algorithm is a widely used cryptographic hash function with a 128-bit hash value. The security of the MD5 hash function is severely compromised. A collision attack exists that can find collisions within seconds on a computer with a 2.6 Ghz Pentium4 processor. MD5 algorithm is not suitable for applications like SSL certificates or digital signatures that rely on this property [2].

There are many encryption algorithms implementations in open source field, as described in [3]. The companies assume the responsibility for the encryption content of any open source code in their commercial products. Software products that use encryption must comply with the encryption export control requirements.

In [4] is considered that the RSA, DES, MD5, SHA, Blowfish, Diffie-Hellman, ElGamal, and AES encryption algorithms are the most efficient in the open source software and have good implementations.
The highest performance encryption algorithm, which also lends itself to hardware acceleration, with performance headroom for the future, is AES-XTS. This algorithm is known as a tweakable cipher, in which all that is required to encrypt or decrypt the data is the data itself, a key, and a tweak value [5].

The algorithm that will be used for encrypt the passwords of CMS users is a block cipher algorithm that work on chunks of specific sized data along with a key resulting in blocks of cipher text [6].

The TDES algorithm is the common name for the Triple Data Encryption Algorithm (TDEA) block cipher, which applies the Data Encryption Standard (DES) cipher algorithm three times to each data block. TDES was designed to provide a relatively simple method of increasing the key size of DES in order to protect against attacks, and without designing a completely new block cipher algorithm [7].

Section 2 of the paper presents the use of CMS application in a collaborative banking system and a report regarding the status of problems solved by bank analysts. In section 3, the TDES encryption algorithm is described in order to encrypt the passwords of CMS users. Section 4 builds some metrics for evaluating the security inside the CMS application.
2. The Collaborative Multicash Servicedesk application in the banking field

Collaborative banking systems differ one from each other by complexity of their applications. A banking information system is designed to automate as much of a set of bank's current operations and provide strategic, tactical and operational information necessary in the decision-making process.

Collaboration in the banking field means the integration of various technologies into a single application that makes sharing and managing information.

In the Figure 1 is presented a collaborative banking system and its components:

[image: image11.jpg]

Fig. 1. Example of collaborative banking system [8]
In the example from Figure 1, the external users can access the bank accounts through an internet banking server, which is connected with the core banking system. The messages from the internet banking server will be received by the core banking only if they pass two security levels. If a message does not have the correct credentials and certificates, then it will be considered a fraud tentative and it will not be received by the core banking. The internal users can access the core banking without using the internet banking server, but they must pass also through the security levels. Other components of the collaborative banking environment are the transaction processing server and the electronic payments server.

The goal of the Collaborative Multicash Servicedesk (CMS) application is to store and process the customers’ requests, solved by the Multicash Helpdesk analysts within a commercial bank in Romania.

The Collaborative Multicash Servicedesk application is structured in two modules:

· the module for online registration of bank customers requests;

· the module for recording phone requests by Multicash helpdesk analysts.

In the module for online registration of bank customers' requests, each customer receives from the bank a username and password with which he will authenticate in the application. The associated customer interface allow the customer to send a written request to the helpdesk department, by framing the issue in the appropriate category and subcategory, but also to register a priority request in exchange of a fee.

In the module for recording phone requests by Multicash helpdesk analysts, after authentication in the application, the analyst see the page from which is made the registration of requests in the database.

The fields to be completed or selected by the bank analyst are the followings:

· customer name, based on suggestions from a predefined list of Multicash customers;

· the contact person of the customer who made the call;

· the request category, which is a drop-down list with predefined categories and related codes;

· request description, which is a field for adding the details of the problem;

· the way to solve by selecting the appropriate option.

The CMS application is currently used in the Multicash Helpdesk department of Raiffeisen Bank, and in the near future will be implemented in the Call Center department of the same bank. The number of users that will use the application will be greater than two hundreds and, for that reason, the data security must be assured and the users’ credentials must be protected.

The features of CMS application are the followings:

· the application is used in a bank where the data security must be carefully assured;
· the CMS database contains information about bank customers and accounts;
· the users must have certainty that nobody can enter with their credentials and steal their identities.
In the Collaborative Multicash Servicedesk application only authorized users have access based on a user name and password. The application administrator is dealing with the access rights of each user, adding and deleting some users according with the bank security rules.

In order to increase the security, the CMS application is protected against SQL injection, so that only authorized users can access it. The SQL injection is a code injection technique that exploits a security vulnerability occurring in the database layer of an application. The vulnerability occurs when user credentials are either incorrectly filtered for string literal escape characters embedded in SQL statements or user credentials are not strongly typed and thereby unexpectedly executed [9].

The protection against SQL injection was realized by minimizing the letters entered by the user in the two textboxes and by replacing the special characters associated with an SQL statement:

string userName = TextBox1.Text.ToLower().Replace("'", "''");

string passWord = TextBox2.Text.ToLower().Replace("'", "''");
In Figure 2 is presented the login page of the Collaborative Multicash Servicedesk application, where are inserted the users’ credentials:
[image: image2.png]Collaborative Multicash Servicedesk

User: customer

Password:

[This appication s protected against 5QL injection and the
lpassuiords are encrypted!

Copyright 2009-2010 Ciurea Cristan-Eugen . Alrights reserved.

Fig. 2. CMS login page
The Collaborative Multicash Servicedesk application is a collaborative auto-adaptive system that allows auto-configuration based on information entered by users. The CMS application adapts to input data and change the components, so as to provide maximum utility and support to its users, regardless the category they belong to.

When the number of monthly requests recorded on the Other requests category is greater than 100, then the application automatically analyze the description of each request in order to recommit some of them from Other requests category in the existing categories or to create new categories. In the application database is permanently kept the number of requests registered on each category at a time moment.

In Figure 3 is shown a report containing the number of requests sent, answered and solved by each bank analyst and a graphical representation:

[image: image3.png]Sent:

Answered:
Solved:

Fig. 3. Report regarding the status of problems solved

For every analyst that operates with the CMS application, a report is generated each month in order to reveal its performance and the workload. The number of requests sent by the customers, answered and solved by the analysts is presented in order to create a graphical representation. The bank management checks this situation monthly in order to see which the best analysts are.
3. Using the encryption algorithm in the CMS application

In order to increase the users responsibility concerning the data introduced in the database of CMS application, data regarding bank customers requests and details about customers accounts, the password of every user must be encrypted, so that nobody can read it, even the application administrator.

The specific features of CMS application have represented criteria in choosing the best encryption algorithm. The high importance of securing users passwords was the main criteria in selecting the TDES algorithm which applies the cipher algorithm three times to each data block.

The TDES algorithm implemented in CMS application for encrypting users’ passwords is presented below. The .NET C# library provides all the basic elements for encrypting a string with a passphrase and decrypting it later.

public static string EncryptString(string Message, string Passphrase)

{

byte[] Results;

System.Text.UTF8Encoding UTF8 = new System.Text.UTF8Encoding();

MD5CryptoServiceProvider HashProvider = new MD5CryptoServiceProvider();

byte[] TDESKey = HashProvider.ComputeHash(UTF8.GetBytes(Passphrase));

TripleDESCryptoServiceProvider TDESAlgorithm = new TripleDESCryptoServiceProvider();

TDESAlgorithm.Key = TDESKey;

TDESAlgorithm.Mode = CipherMode.ECB;

TDESAlgorithm.Padding = PaddingMode.PKCS7;

byte[] DataToEncrypt = UTF8.GetBytes(Message);

try
{

ICryptoTransform Encryptor = TDESAlgorithm.CreateEncryptor();

Results = Encryptor.TransformFinalBlock(DataToEncrypt, 0, DataToEncrypt.Length);

}

finally
{

TDESAlgorithm.Clear();

HashProvider.Clear();

}

return Convert.ToBase64String(Results);

}

In the EncryptString function the TripleDES algorithm is applied with a 128 bit key. The passphrase parameter must be converted into a 128 bit key. Knowing that the MD5 hash algorithm accepts a set of bytes of any length and turns them into a 128 bit hash, by running the password through the MD5 hashing algorithm the desired key is created.

The TDES algorithm turns a byte array into an encrypted byte array. First of all, must convert the C# message string, which is Unicode encoded, into a byte array through the System.Text.UTF8Encoding encoder. The key is used to initialize the TDES algorithm [10].

public static string DecryptString(string Message, string Passphrase)

{

byte[] Results;

System.Text.UTF8Encoding UTF8 = new System.Text.UTF8Encoding();

MD5CryptoServiceProvider HashProvider = new MD5CryptoServiceProvider();

byte[] TDESKey = HashProvider.ComputeHash(UTF8.GetBytes(Passphrase));

TripleDESCryptoServiceProvider TDESAlgorithm = new TripleDESCryptoServiceProvider();

TDESAlgorithm.Key = TDESKey;

TDESAlgorithm.Mode = CipherMode.ECB;

TDESAlgorithm.Padding = PaddingMode.PKCS7;

byte[] DataToDecrypt = Convert.FromBase64String(Message);

try

{

ICryptoTransform Decryptor = TDESAlgorithm.CreateDecryptor();

Results = Decryptor.TransformFinalBlock(DataToDecrypt, 0, DataToDecrypt.Length);

}

finally
{

TDESAlgorithm.Clear();

HashProvider.Clear();

}

return UTF8.GetString(Results);

}
The encrypted byte array is finally converted into a Base64 encoded string for easy storage. The DecryptString function is very similar to the EncryptString function, except that it turns the Base64 encoded encrypted message back into the original UTF8 string.

To keep the code simple, we made use of the fact that an MD5 hash is exactly 128 bits in length. The C# TDES code accepts three possible key lengths: 64 bit, 128 bit and 192 bit. Only 192 bit keys are truly TDES, the 128 bit key length obtained from the MD5 hash is only sufficient for Double DES [10].

By using the TDES encryption algorithm, the password of a user is encrypted as follows:

string EncryptedPass = EncryptString(passWord, "secret");

TextBox1.Text = EncryptedPass;

In Figure 4 is presented a view from the CMS database, where the encrypted passwords are stored:

[image: image4.png]| user | Password
anaiist! W1ldgZdZEVaDNBAHep
client! 0vjuDs4ania=

administrator | GGIX7 cVgaNsHAgUa/KBB1 g==
client2 xwwlsFIKs A=

analist2 SHTFIDOJIVaDNBAHep;

Fig. 4. View of encrypted passwords

In order to make a password readable for a certain user, the DecryptString function is called and the password is decrypted:

string DecryptedPass = DecryptString(EncryptedPass, "secret");

TextBox1.Text = DecryptedPass;

In both situations, the passphrase for encryption and decryption is the word secret. This is the key without which the decryption process cannot be realized.
4. Security and quality metrics for evaluating the CMS application

The security is the most important quality characteristic of a collaborative banking application. In order to ensure the high security level inside the banking information system, the banks have engaged real hackers to test and discover the vulnerabilities of every new application which will be launched in production. The banking applications are exposed to many attacks and it is less expensive to pay hackers to discover the vulnerabilities than to launch in real environment an application that is not tested enough. The loss for the bank will be bigger in the second case.

Regarding the metrics for evaluating the security effects of CMS application, several indicators are defined to help give us a better view on the security level.

The attack rate, AR, upon the CMS application is:

[image: image5.wmf]100

*

TNIP

NIP

AR

=

where:

NIP – the number of IP addresses from which a different type of attack was launched;

TNIP – the total number of accessed IP addresses.

This metric was measured before and after the implementation of TDES encryption algorithm. Before the moment when the application was secured, the attack rate was bigger and has diminished in time. In Table 1 are presented the AR values measured between October 2009 and August 2010:

Table 1. The measured values of attack rate indicator

	Month
	Attack rate (AR) value

	October 2009
	70%

	November 2009
	68%

	December 2009
	65%

	January 2010
	61%

	February 2010
	60%

	March 2010
	54%

	April 2010
	45%

	May 2010
	32%

	June 2010
	26%

	July 2010
	12%

	August 2010
	3%

The data was automatically acquired from defects, times moments, errors, and based on their values were calculated the indicators for each metric.

The total loss, TL, which a bank support for security vulnerability is represented by:

[image: image6.wmf]NAA

IF

TL

*

=

where:

IF – impact factor;

NAA – number of applications affected.

In the banking field the impact factor is usually high, so that the total loss of the bank affected is very big. The banking information system is composed by a lot of collaborative applications that are interconnected. When a security vulnerability affect one application, the vulnerability will be propagated to the others applications in the system.
The number of security vulnerabilities, SV, per size of CMS application can be calculated as:

[image: image7.wmf]SA

SVDA

SV

=

where:

SVDA – the number of security vulnerabilities detected in the application;

SA – the size of application, usually expressed in lines of code (LOC or KLOC) of function points (FP).

Before the TDES algorithm implementation, the number of security vulnerabilities per size of CMS application was 0.7, but after the implementation of the encryption algorithm the SV value decrease to 0.3.

The cost for testing a security vulnerability, CT [11], is:

[image: image8.wmf]å

=

=

NC

i

i

CCTC

CT

1

where:

NC – number of security vulnerabilities in the application;

CCTCi – cost of testing ith security vulnerability;

The efficiency of testing method is given by:

[image: image9.wmf]k

NTE

NEi

ET

i

´

=

where:

ETi – the efficiency of testing method i;

NEi – number of security vulnerabilities found using method i;

NTE – number total of security vulnerabilities found;

k – coefficient depending on the application type; it has values from 0 to 1 and it is calculated based on empirical data.

In order to measure the quality of a collaborative system, represented by Collaborative Multicash Servicedesk application, and assess its performance was used the indicator:

[image: image10.wmf])

,

max(

)

,

min(

*

)

,

max(

)

,

min(

*

2

1

d

c

d

c

p

b

a

b

a

p

Q

+

=

,

where:

a, c – the planned values for two quality characteristics;

b, d – the realized values for two quality characteristics;

p1, p2 – the share of each quality characteristic (p1+ p2 = 1).

The quality indicator was 0.89 before the implementation of encryption algorithm and increased to 0.93 after the implementation. This quality was achieved at the end of the implementation process of TDES encryption algorithm, because, during the implementation, were built those internal properties that determined the level of quality characteristics.
It must be reached equilibrium between the model dimension and its capability to give significant results. The metrics must be not too complicated because it will use lots of resources when implemented and also it must be not too simple because the measured levels will lose relevance.

5. Conclusions

The encryption process can protect the confidentiality of messages, but other techniques are still needed to protect the integrity and authenticity of a message. Through these techniques, the verification of a message authentication codes (MAC) or a digital signature are very important.

There are a number of reasons why an encryption algorithm may not be adequate in all the cases. First of all, an e-mail must be digitally signed at the point it was created in order to provide non-repudiation for some legal purposes. Otherwise, the sender could argue that it was counterfeit with after it left the computer, but before it was encrypted at a gateway [12].

The CMS application, being used effectively within a commercial bank, contributes to determine the strategies for addressing each customer, according to the history of problems he encountered.

By encrypting the users’ passwords in the CMS database was ensured a high security level of the data inside the application. Each user is responsible for the information registered in the application and he must protect his own authentication elements.

Acknowledgements

This article is a result of the project POSDRU/6/1.5/S/11 „Doctoral Program and PhD Students in the education research and innovation triangle”. This project is co funded by European Social Fund through The Sectorial Operational Programme for Human Resources Development 2007-2013, coordinated by The Bucharest Academy of Economic Studies, project no. 7832, Doctoral Program and PhD Students in the education research and innovation triangle, DOC-ECI.
References

[1] Data compression, Available at: http://en.wikipedia.org/wiki/Data_compression

[2] MD5, Available at: http://en.wikipedia.org/wiki/MD5

[3] Encryption Algorithms Widely Embedded in Open Source Software, Available at: http://www.blackducksoftware.com/news/releases/2009-10-21
[4] J. Erickson, Beware Open Source Encryption, Available at: http://www.drdobbs.com/open-source/220800130
[5] Encryption and Compression for Enterprise Storage Solutions, Available at: http://www.wwpi.com

[6] Encryption algorithms, Available at: http://www.networksorcery.com/enp/ data/encryption.htm

[7] Triple DES, Available at: http://en.wikipedia.org/wiki/Triple_DES

[8] C. Ciurea, “Open Source Tools for Collaborative Systems Hierarchization,” Open Source Science Journal, Vol. 2, No. 2, 2010, pp. 19-26.

[9] SQL injection, Available at: http://en.wikipedia.org/wiki/SQL_injection

[10] Encrypting and Decrypting a C# string, Available at: http://www.dijksterhuis.org/ encrypting-decrypting-string/

[11] P. Pocatilu and C. Ciurea, “Collaborative Systems Testing,” Journal of Applied Quantitative Methods, Vol. 4, No. 3, 2009.

[12] Encryption, Available at: http://en.wikipedia.org/wiki/Encryption

Author

[image: image1.png]Collaborative Banking Environment

Intermet
Banking
Server

Transaction
Processing
Server

Electronic
Payments
Server

BANKING

Security Level 1

CORE

‘Security Level 2

Cristian CIUREA has a background in computer science and is interested in collaborative systems related issues. He has graduated the Faculty of Economic Cybernetics, Statistics and Informatics from the Bucharest Academy of Economic Studies in 2007 and the Informatics Project Management Master in 2010. He is currently conducting doctoral research in Economic Informatics at the Academy of Economic Studies. Other fields of interest include software metrics, data structures, object oriented programming in C++ and windows applications programming in C#.
PAGE
5

_1343924928.unknown

_1343925040.unknown

_1343926359.unknown

_1338143185.unknown

_1338143186.unknown

_1338143183.unknown

