Journal of Applied Collaborative Systems Vol. 2, No. 4, 2010

Designing Collaborative Informatics Systems in Banking

Cristian CIUREA

Economic Informatics Department,

Academy of Economic Studies, Bucharest, Romania

cristian.ciurea@ie.ase.ro

Abstract: Collaborative informatics systems are described in this paper and their specific characteristics to the banking field are revealed. A collaborative banking process is presented and the dependency matrix between activities is built in order to increase the process efficiency. Metrics for measuring the quality of collaborative banking systems are defined and their values are analyzed. A genetic algorithm is described and implemented to determine the number of modules and components associated with software applications integrated in the banking informatics system for which the relative complexity is minimum or maximum.

Keywords: collaborative system, banking, design, collaborative process, metrics, genetic algorithm.

1. Collaborative informatics systems

A collaborative system is developed based on a set of specifications that were defined in the analysis stage in order to define objectives for the development process. The system must behave and must give the results the users want and those they have stated at the start.

A collaborative informatics system is represented through many software programs, running on a network whose nodes consist of computers, multi-processors, massive parallel processors or workstations, each having access to its own memory or to some common shared memory [1].

Field of application criteria classifies the collaborative informatics systems in:

· collaborative functional systems;

· collaborative micropayment systems;

· collaborative planning systems;

· collaborative tagging systems;

· collaborative writing systems;

· collaborative medical systems.
The collaborative functional systems include collaborative banking systems and cross all the activities taking place in the economy, providing necessary information and overall coordination for production and finance management [2].
The collaborative informatics system implemented in a bank must be able to deal with a huge number of daily transactions, consisting in different types of operations:

· transfers between existing accounts;

· opening new accounts;

· realization or liquidation of deposits;

· according loans;

· foreign exchanges;

· payments to state budget;

· payments to customs;

· direct payments to suppliers;

· other operations.

These transactions require the existence of an advanced database management system and an integrated computer system. Electronic transactions that take place in a bank are saved in databases and are never deleted. Each bank has well-tuned procedures for backup and disaster recovery, to avoid the loss of database records, even for natural disasters events.

The informatics system of a bank is the main component of the banking system, because it includes all the information about customers and their accounts, helping to reduce the amount of data available on paper. The informatics system from a bank is a collaborative system, because requires the cooperation, communication and coordination of many software applications in order to achieve a common goal [3].

The design stage is a very important part of the development of collaborative banking informatics systems. In Figure 1 is presented the development cycle of a collaborative banking system:

[image: image7.jpg]

Fig. 1. Development cycle of a collaborative banking system

When designing a collaborative informatics system in the banking field, a lot of quality characteristics must be carefully analyzed in order to ensure the high quality of the banking services and the success of the bank on the market. A very important characteristic that must be measured and tested is the security of each component and each application integrated in the system. The security vulnerabilities must be eliminated so much as possible, in order to prevent future losses of money and resources.

In order to ensure a high security level inside the information system, the banks have engaged real hackers to test and discover the vulnerabilities of every new application that will be launched in production.

The banking applications are exposed to many attacks and it is less expensive to pay hackers to discover the vulnerabilities than to launch in real environment an application that is not tested enough.

2. Increasing the efficiency of collaborative banking processes
Collaborative processes require the existence of such activities that need to be automated to streamline the workflow within an organization.

The business process regarding the acquisition of electronic payment service by a customer of a bank is a collaborative process.

The process of buying the electronic payment service of a bank consists of the following activities:

A1 – requesting for purchase an electronic payment application;

A2 – signing and stamping the contract;

A3 – receiving the request;

A4 – delivering the contract;

A5 – completing the annex for customer enrolment;

A6 – sending the annex by email;

A7 – receiving the annex;

A8 – enrolling the customer on the server;

A9 – scheduling the intervention for installation;

A10 – notifying the date for installing the application;

A11 – receiving the notification;

A12 – sending installation details;

A13 – receiving installation details;

A14 – confirming availability;

A15 – receiving confirmation;

A16 – supplying installation details;

A17 – providing communication file;

A18 – receiving intervention details;

A19 – preparing the installation;

A20 – installation and training;

A21 – preparing the intervention report;

A22 – sending the report to the bank;

A23 – receiving the report;

A24 – completing the installation;

A25 – using the application;

A26 – making payments;

A27 – taking statements and accounts balances;

A28 – providing feedback to the bank.

Table 1 shows the dependency matrix of the firsts 17 activities from the business process regarding the acquisition of the electronic payment service:

Table 1. Dependency matrix between activities [4]

	
	A1
	A2
	A3
	A4
	A5
	A6
	A7
	A8
	A9
	A10
	A11
	A12
	A13
	A14
	A15
	A16
	A17

	A1
	0
	1
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	A2
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0

	A3
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	A4
	0
	1
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	A5
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0

	A6
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	A7
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0

	A8
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	0

	A9
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0

	A10
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0

	A11
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0

	A12
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0

	A13
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0

	A14
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0

	A15
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0

	A16
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1

	A17
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

The mij element of the dependency matrix has the value 1 if the activity Aj is dependent on the activity Ai and the value 0 if the activity on the column j is not dependent on the activity on lines i.

If the dependency matrix for the selected business process has less than 30% non-zero items, this matrix is considered a sparse matrix and is represented using two structure vectors, one that contains the line positions and the other the positions of columns where are the values 1.

To determine whether the dependencies matrix between activities is a sparse matrix, is calculated a load degree, GI, as the ratio between the number of non-zero elements and the total number of matrix elements:

[image: image2.wmf]NRA

NRA

NEN

GI

-

=

2

,

where:

NEN – the number of non-zero elements;

NRA – the number of activities from the business process.

If the dependency matrix between activities, presented in Table 1, has a loading degree of 30% this means that is considered a sparse matrix.

3. Metrics for measuring the quality of collaborative banking systems

The quality of a collaborative banking system is defined as a characteristic bearing ability to meet the needs specified or implied.

The reliability is another characteristic that needs special attention and must be certified when dealing with collaborative banking systems [5].

To measure the quality of a collaborative system and evaluate its performance, the following indicator is used:

[image: image3.wmf])

,

max(

)

,

min(

*

)

,

max(

)

,

min(

*

2

2

2

2

2

1

1

1

1

1

rv

pv

rv

pv

p

rv

pv

rv

pv

p

QCBS

+

=

,

where:

pv1, pv2 – the planned values for two quality characteristics;

rv1, rv2 – the realized values for two quality characteristics;

p1, p2 – the share of each quality characteristic (p1+ p2 = 1).
For the shares p1 = 0.4 and p2 = 0.6, the realized value rv1 = 75 and the planned value pv1= 80, for the first quality characteristic, and for the realized value rv2 = 95 and the planned value pv2 = 100, for the second quality characteristic, the quality indicator is QCBS = 0.945. A value of QCBS, which is very near to 1, means that the collaborative banking system meet very well the specified criteria.

Some experimental results and their diagram are presented in the Figure 2:

[image: image4.png]Quality results

100

100 100

Fig. 2. Experimental quality results chart

For the same amount and quality planned in the first dataset, when the amount realized is 90% and the quality achieved is 95%, the quality indicator is 0.93. In the second dataset, for the same amount and quality planned, when the amount realized is 95% and the quality achieved is 85%, the quality indicator has the value 0.89.

4. Building indicators using a genetic algorithm
Collaborative informatics systems in the banking field differ one from each other by complexity. The problem of complexity is made similarly to the problem of simplicity. The complexity of collaborative informatics systems represents a new concept that requires a rigorous definition in order to measure the level of complexity and to compare these kinds of systems.

The relative complexity of a banking informatics system, CR, is determined according to the relationship:

[image: image5.wmf])

(

log

*

)

(

log

*

log

*

2

2

2

y

x

y

x

y

y

x

x

RC

+

+

+

=

,

where:

x – the number of components associated with software applications integrated in the banking informatics system, with the property that x > 0 is a natural number, x Є N.

y – the number of modules forming the banking informatics system, where y > 0 is a natural number, y Є N.

In Figure 3, the 3D graphic of RC function is presented:

[image: image6.png]

Fig. 3. The 3D graphic of the function RC

The 3D graphic was built using the application Online 3-D Function Grapher [6] and the values of x and y where considered the natural numbers in the interval [1; 10].
In order to determine the local minimum and maximum values of the RC function, where x, y Є R, a genetic algorithm was implemented. This algorithm objective is to determine the number of modules and components associated with software applications integrated in the banking informatics system for which the relative complexity is minimum or maximum.

The source code of the genetic algorithm was implemented in the C# programming language, being realized the classes GeneticAlgorithm, Genome and GenomeComparer, as follows [7]:

public delegate double GeneticAlgorithmAFunction(double[] values);

public class GeneticAlgorithm

{

 static private GeneticAlgorithmFunction getFitness;

 public GeneticAlgorithmFunction FitnessFunction

 {

 // etc.

 };

 // etc.
}

GeneticAlgorithm ga = new GeneticAlgorithm(0.8,0.05,100,2000,2);

ga.FitnessFunction = new GeneticAlgorithmFunction(theActualFunction);

public sealed class GenomeComparer : IComparer

{

 public GenomeComparer()

 {

 }

 public int Compare(object x, object y)

 {

 if (!(x is Genome) || !(y is Genome))

 throw new ArgumentException("Not of type Genome");

 if (((Genome) x).Fitness > ((Genome) y).Fitness)

 return 1;

 else if (((Genome) x).Fitness == ((Genome) y).Fitness)

 return 0;

 else
 return -1;

 }

}

The genetic algorithm requires the following steps:

· creating a new population;

· selecting the best two individuals from the population and cross them for obtaining children;

· replacing the old population with a new one;

· resumption of the previous steps until it reaches the optimal solution of the problem.

The Genome class was built as a simple container. A matrix whose elements lie in the range 0-1 gives the basic structure. The algorithm will use these values, and the user will expand them to the scale of needs.

The Crossover() method needs access to private data of the genome, so it is a class member function in the Genome class, this method exits being two child objects of the Genome class.

5. Conclusions

When designing a collaborative banking system should be taken into account the context in which it will be used and the views of the people that will use it.

Collaborative processes [8] that take place within a collaborative banking system supposes the existence of a centralized database, in which operations are performed by inserting, modifying, archiving of records related to bank transactions. These operations are not performed directly on the centralized database, but they are added in a queue managed using intelligent agents. These agents analyse the type of operations and its priority and execute it on a centralized database. This provides an increased level of security through the introduction of intelligent agents in managing large data sets in the collaborative banking system.

Acknowledgements

This article is a result of the project POSDRU/6/1.5/S/11 „Doctoral Program and PhD Students in the education research and innovation triangle”. This project is co funded by European Social Fund through The Sectorial Operational Programme for Human Resources Development 2007-2013, coordinated by The Bucharest Academy of Economic Studies, project no. 7832, Doctoral Program and PhD Students in the education research and innovation triangle, DOC-ECI.
References

[1] I. Dzitac and G. Moldovan, Distributed Systems. Information Models, CCC Publications, Oradea: Universităţii Agora Publishing House, 2006.

[2] P. Pocatilu and C. Ciurea, “Collaborative Systems Testing,” Journal of Applied Quantitative Methods, Vol. 4, No. 3, 2009.

[3] C. Ciurea, “The Development of a Mobile Application in a Collaborative Banking System,” Informatica Economică Journal, Vol. 14, No. 3, 2010.

[4] I. Ivan, C. Ciurea, S. Pavel and M. Doinea, “Security of Collaborative Processes in Large Data Sets Applications,” The 5th International Conference on Applied Statistics, November 19-20, 2010, NIS Publishing House, Bucharest, Romania.
[5] M. P. Cristescu, C. Cucu, C. I. Cristescu, L. Ciovica, “Certification of Software Reliability in Collaborative Systems,” Journal of Applied Collaborative Systems, Vol. 2, No. 2, 2010.

[6] http://www.livephysics.com/ptools/online-3d-function-grapher.php

[7] http://www.codeproject.com/KB/recipes/btl_ga.aspx

[8] I. Ivan, D. Milodin and M. Georgescu, “Digital Content Audit - Collaborative Process,” Journal of Applied Collaborative Systems, Vol. 2, No. 1, 2010.

Author

[image: image1.png]- kg
Banking

System

Cristian CIUREA has a background in computer science and is interested in collaborative systems related issues. He has graduated the Faculty of Economic Cybernetics, Statistics and Informatics from the Bucharest Academy of Economic Studies in 2007 and the Informatics Project Management Master in 2010. He is currently conducting doctoral research in Economic Informatics at the Academy of Economic Studies. Other fields of interest include software metrics, data structures, object oriented programming in C++ and windows applications programming in C#.
PAGE
55

_1353427275

_1353489016.unknown

_1353489372

_1353415414.unknown

_1353412930.unknown

