[bookmark: _Toc390149048]Secure Issues in IoT – Internet of Things Architecture for Sensors Data Processing

[bookmark: _Toc390149049]CRISTIAN TOMA, MARIUS POPA, CRISTIAN CIUREA, CLAUDIU VINTE
Department of Economic Informatics & Cybernetics
Bucharest University of Economic Studies
cristian.toma@ie.ase.ro, marius.popa@ie.ase.ro, cristian.ciurea@ie.ase.ro, claudiu.vinte@ie.ase.ro

Abstract: The paper shows a potential approach of distributed technologies used in mobile environment for gather data from IoT sensors and gateways in order to collect and process sensitive information regarding premises conditions within building. First section presents various board types that might be used in such architecture. Second section presents communications protocols used in IoT and third section show the proposed secure architecture proof of concept for buildings premises data collection. In conclusions is established what major security points in the architecture may be extended.

Keywords: IoT – Internet of Things, IoT Communications protocol (MQTT and REST), Secure IoT Architecture.

1 IoT Hardware Overview

The IoT infrastructure is the support base for all solutions that involved sensors data collection.
In a typical IoT infrastructure, the logical data flow is the following:
· IoT Sensors are items used to obtain specific data indicators from environment like for RFID, Humidity, Temperature, images, video / multimedia, etc.;
· IoT Nodes (Embedded Devices – Smart Objects) collect data about various indicators from the system using IoT Sensors;
· The IoT Gateways (Embedded Devices – Smart Objects) processes the data collected from IoT Nodes may establish a local feed-back behavior and send to the Data-Center / Back-End system, in order to process them with dedicated solutions for Big Data, Distributed and Parallel / GRID / Cloud computing;
· IoT Cloud / Back-End Systems like Public/Private or OpenSource Clouds (in PaaS – Platform as a Service or IaaS – Infrastructure as a Service approaches) for IoT are designed to provide frameworks and API for collecting data from IoT gateways and nodes and to compute them accordingly with the solution’s business logic rules.
· IoT Middleware / Communications Protocols are used to link the IoT sensors with IoT nodes and Gateways (M2M – Machine to Machine protocols) and finally to connect the IoT nodes/gateways with cloud back-end servers.

A list of possible embedded boards that might be used as IoT Nodes / Gateways is in Table 1:

Table 1. IoT Devices (table published in IE2014)
	IoT Boards
	IoT Features – HW + SW
	Tools + Developers Web Page

	Arduino Yún
	HW characteristics:
Microcontroller: Atmega32u4 and Atheros AR9331
Flash Memory: 32 KB (of which 4 KB used by bootloader)
SRAM: 2.5 KB
EEPROM: 1 KB
Clock Speed: 16 MHz
Digital I/O Pins: 20
PWM Channels: 7
Analog Input Channels: 12
Linux microprocessor Atheros AR9331
Architecture: MIPS @400MHz
Ethernet: IEEE 802.3 10/100Mbit/s
WiFi: IEEE 802.11b/g/n
USB Type-A: 2.0 Host/Device
Card Reader: Micro-SD only
RAM: 64 MB DDR2
Flash Memory: 16 MB

SW characteristics:
Operating system: Atheros processor supports a Linux distribution based on OpenWRT named Linino
	Programming Languages:
· C/C++, Arduino code

Tools & SDK:
· Arduino IDE;
· Arduino API;
· Linino images for the Yun;

Web:
http://arduino.cc/en/Main/Software

	Intel Galileo
	HW characteristics:
Microcontroller: 32-bit Intel® Pentium® instruction set architecture (ISA)-compatible processor
Frequency: 400 MHz
Cache: 16 KB L1
SRAM: 512 KB
DRAM: 256 MB
Legacy SPI Flash (bootloader): 8 MB
Micro SD card (optional): up to 32 GB
EEPROM: 11 KB
Communication: 10/100 Mb Ethernet RJ45, USB 2.0 Client port, USB 2.0 Host port, RS-232 UART port and 3.5mm jack, Mini PCI Express (mPCIe) slot with USB2.0 Host support

SW characteristics: Linux based and Arduino API
	Programming Languages:
· C/C++, Arduino code

Tools & SDK:
· Arduino IDE;
· Arduino API;
· Linux Image for SD for Intel Galileo;
· Little Linux Image Firmware Update for Intel Galileo;
· Board Support Package Sources for Intel Quark;

Web:
https://communities.intel.com/docs/DOC-22226

	Raspberry Pi
	HW characteristics (Model B):
Microcontroller: Broadcom BCM2835
SDRAM: 512 MB (shared with GPU)
USB 2.0 ports: 2 (via the built in integrated 3-port USB hub)
Storage: SD / MMC / SDIO card slot
Network: 10/100Mbps Ethernet USB adapter on the third port of the USB hub
Video outputs: Composite RCA (PAL and NTSC), HDMI, raw LCD Panels via DSI
Audio outputs: 3.5 mm jack, HDMI, and I²S audio

SW characteristics: Raspbian, Pidora, XBCM distributions, other Linux based OSs.
	Programming Languages:
· Python, C++, C#, Java;

Tools & SDK:
· Python IDE;
· Visual Studio IDE;
· Java SE Embedded;

Web:
http://docs.python.org/3/
http://www.oracle.com/technetwork/articles/java/raspberrypi-1704896.html

In IoT infrastructures the communications protocols are important and there are in the market already implemented versions of middleware in WSN (Wireless sensor Network) and communications protocols such as: CoAP, MQTT and REST/SOA-SOAP, (optional other new protocols such as XMPP). These protocols can operate over radio or wire. For wireless / radio connections, it is taken into account the following standards: ZigBee (IEEE 802.15.4), Wi-MAX (IEEE 802.16), Wi-Fi (IEEE 802.11 variants), Bluetooth (IEEE 802.15.1), UWB (IEEE 802.15.3a), Flash OFDM (IEEE 802.20), 6LoWPAN - IPv6 over Low power Wireless Personal Area Networks (IETF RFC 6282 & 4919), but not limited to them. Another important issue regarding technological approaches is security and quality of the solution. In the next section an overview of IoT communications protocols and middleware is presented.

2 IoT Communications Protocols

IoT communication protocols aim specifications adapted to resource-constrained devices architectures and infrastructures. Below, the MQTT and REST communications protocols are briefly described.

2.1 MQ Telemetry Transport (MQTT) is a communication protocol aiming a very simple and lightweight messaging model according to following principles [11]:
· Minimization of device resource requirements as limited processor or memory;
· Minimization of network bandwidth, cost and unreliability;
· Ensuring reliability of the communication model;
· Assurance of message delivery.

There are two main specifications for MQTT:
1. MQTT v3.1 specification – implements a publish/subscribe messaging model for remote locations requiring small code footprint and/or premium network bandwidth;
2. MQTT-SN v1.2 specification – is a MQTT protocol version for Sensor Networks aiming embedded devices in non-TCP/IP networks.

MQTT v3.1 protocol specification is stated by International Business Machines Corporation (IBM) and Eurotech. It is a communication protocol adapted to constrained environments. The main sections of the protocol aim the following issues [12]:
· The message format is common to all packet types;
· The packet types are described in specific details;
· The packets flow and the packets exchanges between client and server.

The MQTT command message can contain [12]:
· A fixed header – the header format is composed by two bytes:
· Byte 1 – contains the Message Type (bits 7 to 4) and the flags DUP (bit 3), QoS level (bits 2 to 1) and RETAIN (bit 0); Message Type takes one of 16 possible values and encodes the command mnemonic; DUP flag is set when there are re-deliver attempts of some messages; QoS is used when a PUBLISH message is delivered and the flag indicates the level of delivery assurance; RETAIN is a flag used only for PUBLISH messages when these are sent by client to a server, setting the value 1 for this flag;
· Byte 2 – contains the Remaining Length field; indicates the number of bytes remaining for the current message (variable header, payload) less the length of the fixed header;
· A variable header – is placed between the fixed header and the payload;
· Payload – the MQTT command messages types are:
· CONNECT – contains one or more UTF-8 encoded strings; the content is set by the flags from the variable header; UTF-8 is an encoding technique for Unicode strings and it is used in text-based communication;
· SUBSCRIBE – contains UTF-8 encoded strings assigned to topic names to which the client can subscribe and the QoS level;
· SUBACK – contains a list of granted QoS levels in the same order like the topic names from correspondent SUBSCRIBE message;
· Message Identifier – is present in messages where the QoS level in the fixed header indicates level 1 or 2; it is stored in the variable header of some MQTT messages.

2.2 Representational State Transfer (REST) is a style of communication architecture between systems that implements a request/response model over the Internet. REST is a simple alternative for Remote Procedure Calls and Web Service. REST cannot provide asynchronous message exchanges. The stateless model supported by HTTP requires including additional information in every request that must be processed by the server. This issue introduces additional time in request processing and additional needs regarding the available resources [14].
In the REST style, the message exchanges are made in plain text because the HTTP is used as application layer transfer protocol between client and server. Also, the SSL and TLS may be used for security assurance.
REST uses HTTP request to manage data through Create/Read/Update/Delete operations, implemented by the request methods GET, POST, PUT and DELETE.

According to [15], the REST architecture components aim:
· Resources – are identified by URIs and represent the key component of the architecture; related information about a resource is available by links;
· Client/Server model – any node can issue a request to any of the other nodes; the request issuer is the client and the receiver is the server; thus, a server may be a client of other node;
· Stateless model – the server response cannot use information resulted from previous interactions; thus, the server needs all appropriate information to complete the client request; that information is included in the client request;
· Resource caching – implemented to increase the effectiveness of resource use; decision regarding what resources and how long are cached is made by server;
· Proxy servers – are implemented to improve the performance and scalability of the REST architecture.

Service-Oriented Architecture (SOA) provides application functionality as services to other applications. SOA is software architecture and makes the computers connected over a network to cooperate in order to provide the complete functionality of large application software. SOA can be implemented by using web services standards like Simple Object Access Protocol (SOAP). SOAP is a protocol specification for exchanging structured messages in computer networks as web services. The message format is defined on Extensible Markup Language (XML) Information Set, and message exchanges rely on application protocols like HTTP or Simple Mail Transfer Protocol (SMTP).
SOAP provides request/response encapsulation and transmission over the network using the HTTP. Concepts like addressing, security, discovery or service composition are descripted in the Web Services (WS-*) standards and they are adapted to meet the needs of the resource-constrained devices [16].
SOA can use REST as service-based technology to provide a greater interoperability of the application software. Thus, uniform interfaces may be created to couple services for different smart devices.

3 IoT Architecture for Processing Sensors Data

A solution proposal as proof of concept in collecting and processing data from sensors over an IoT infrastructure include an IoT architecture for servers rooms monitoring within a company building premises.

The Figure 1 represents the overview for the IoT system components architecture and interactions between them for facility servers’ room’s management system.
The proposed components system architecture lays on IoT (Internet of Things) infrastructure based on the following n-tier design pattern (Figure 1):
· S1: Sensors and IoT Gateways / Smart Objects Sub-system (Front-End – Context Aware Tier)
· S2: IoT Silos/Micro-cloud Infrastructure Sub-system – containing modules for (Back-end):
· Heterogeneous Sensors Data Acquisition Collection + M2M Proxy and Gateway + Micro-cloud IoT instances for HPC (High Performance Computer) and HTC (High Throughput Computing) green computing
· S3: IT Cloud, Data and Processing Center Sub-system – containing modules for (Back-end)
· IT Cloud/P2P (Peer2Peer) for implementing the data processing for the system status according with the received data from the sensors.
· BI – Business Intelligence for automated decisions + ERP – Enterprise Resource Planning for resources management + ESB – Enterprise Service Bus and SOA – Service Oriented Architecture Modules for data flow orchestration + Payment and Billing for companies that want to monitor the facilities.
· Mobile (SMS/Smart-Mobile-App) and Web for the project web-services, web-portal and mobile convergence access (from the end-users access)
S4: Secure Middleware Sub-system contains modules in Front-End and Back-End, which are responsible with data communications protocols implementation (MQTT/CoAP, REST, WS, etc.), M2M (Machine to Machine) data structures exchange, and secure messages routing.

[image: D:\Cristian\School\F0600_PapersAndConferences\F0100_Conferences\SECITC2014\IoTComponents.jpg]

Figure 1. IoT Components System Architecture for Facility Server Rooms Management System

In figure 2 there is a Node-RED JSON source code in diagram representation that is run by a Node.js deployed instance on a Raspberry Pi board, with Linux Embedded OS distribution (Raspbian) and Python 2.7 plus Java SE Embedded 7. In table 2 there is the source code of Node-RED JSON (Java Script Object Notation) script file source code run by Node.js (including the business logic from each building block written in Java Script). The logic from the file is to obtain data from a installed sensors (e.g. emonTH) using MQTT protocol and dispatch the data via Wi-Fi by the IoT node (the Raspberry Pi board) to the back-end using String objects that will be submitted over TCP/IP connection (Wi-Fi / Zig-Bee) using REST protocol at the application level.

[image:]
Figure 2. Node-RED – script with JSON and JS for MQTT components interaction

Table 2. Node-RED JSON script file source code run by Node.js
	[{"id":"ba386057.845d3","type":"mqtt-broker","broker":"127.0.0.1","port":"1883","clientid":""},{"id":"d18c5385.f6d9d","type":"mqtt in","name":"Servers room node Raw","topic":"company/serversroom/node/raw","broker":"ba386057.845d3","x":95,"y":208,"z":"5e44bf58.8f8e4","wires":[["33f2548f.ea318c"]]},{"id":"33f2548f.ea318c","type":"function","name":"Parse emonTH ","func":"// console.log(msg.topic, msg.payload, msg.qos, msg.retain);\n// context = {};\n//retrieve byte data from array\nvar raw= JSON.parse(msg.payload);\nbuf = new Buffer(raw);\n\nmsg.environment = new Object();\n\n//data is sent through *10 to avoid floating points - so divide\n//to get the real value back\nmsg.environment.Temperature= (buf.readInt16LE(0))/10;\nmsg.environment.Humidity = (buf.readInt16LE(4))/10;\nmsg.environment.Voltage = (buf.readInt16LE(6))/10;\n\n\nreturn msg;","outputs":"1","x":275,"y":207,"z":"5e44bf58.8f8e4","wires":[["1e7d2550.bd09ab"]]},{"id":"62994078.90f58","type":"mqtt out","name":"ServersroomTemp","topic":"company/serversroom/temp","broker":"ba386057.845d3","x":802,"y":170.99996948242188,"z":"5e44bf58.8f8e4","wires":[]},{"id":"f48f9780.4c7b28","type":"mqtt out","name":"Serversroom Voltage","topic":"company/serversroom/voltage","broker":"ba386057.845d3","x":814,"y":279.99993896484375,"z":"5e44bf58.8f8e4","wires":[]},{"id":"b1d75a87.44947","type":"mqtt out","name":"Serversroom Humidity","topic":"company/serversroom/humidity","broker":"ba386057.845d3","x":813,"y":206.99996948242188,"z":"5e44bf58.8f8e4","wires":[]},{"id":"1e7d2550.bd09ab","type":"function","name":"Add Dew Point","func":"// The received message is stored in 'msg'\n// It will have at least a 'payload' property:\n// console.log(msg.payload);\n// The 'context' object is available to store state\n// between invocations of the function\n// context = {};\n\n// expects environment.temp && environment.humidity \nif(msg.environment != null)\n\t{\n\t\tvar temp2 = msg.environment.Temperature;\n\t\tvar r = msg.environment.Humidity;\n\t \n\t\tif(temp2 !=null && !isNaN(temp2) && r !=null && !isNaN(r))\n\t \t{\n\t\t \n\t\t var temp = -1.0*temp2;\n\t\t es = 6.112*Math.exp(-1.0*17.67*temp/(243.5 - temp));\n\t\t ed = r/100.0*es;\n\t\t eln = Math.log(ed/6.112);\n\t\t td = -243.5*eln/(eln - 17.67);\n\t\t msg.environment.Dewpoint = td.toFixed(2);\n\t\t}\n\t}\nreturn msg;","outputs":1,"x":428,"y":208.00006103515625,"z":"5e44bf58.8f8e4","wires":[["8e23681a.a6b7d"]]},{"id":"8e23681a.a6b7d","type":"function","name":"Route Messages","func":"// The received message is stored in 'msg'\n// It will have at least a 'payload' property:\n// console.log(msg.payload);\n// The 'context' object is available to store state\n// between invocations of the function\n// context = {};\n//create json text\n\nif(msg.environment == null)\n{\n\t//no data - stop here\n\treturn null;\n}\n\njsonText = JSON.stringify(msg.environment);\n \nvar msg1 = {payload:JSON.stringify(msg.environment)};\nvar msg2 = {payload:msg.environment.Temperature};\nvar msg3 = {payload:msg.environment.Humidity};\nvar msg4 = {payload:msg.environment.Dewpoint};\nvar msg5 = {payload:msg.environment.Voltage};\n\n\nreturn [msg1,msg2,msg3,msg4,msg5];","outputs":"5","x":587,"y":208.00006103515625,"z":"5e44bf58.8f8e4","wires":[["7ffb3fad.d4b02","13205c59.7e5f6c","f701d467.4e93b"],["62994078.90f58"],["b1d75a87.44947"],["e8150ba9.7ab97"],["f48f9780.4c7b28"]]},{"id":"e8150ba9.7ab97","type":"mqtt out","name":"Serversroom Dew Point","topic":"company/serversroom/dewpoint","broker":"ba386057.845d3","x":818,"y":244.00003051757812,"z":"5e44bf58.8f8e4","wires":[]},{"id":"7ffb3fad.d4b02","type":"mqtt out","name":"Serversroom Json","topic":"company/serversroom/json","broker":"ba386057.845d3","x":800,"y":99.00006103515625,"z":"5e44bf58.8f8e4","wires":[]},{"id":"13205c59.7e5f6c","type":"debug","name":"Serversroom Json","active":true,"complete":"false","x":801,"y":134.00003051757812,"z":"5e44bf58.8f8e4","wires":[]},{"id":"f701d467.4e93b","type":"function","name":"To emoncms Node 19","func":"// The received message is stored in 'msg'\n// It will have at least a 'payload' property:\n// console.log(msg.payload);\n// The 'context' object is available to store state\n// between invocations of the function\n// context = {};\n\nmsg.topic = \"company/emoncms/out/\";\nmsg.topic += \"19\";\nreturn msg;","outputs":1,"x":579,"y":62.00006103515625,"z":"5e44bf58.8f8e4","wires":[["e3fa3692.f2c268"]]},{"id":"e3fa3692.f2c268","type":"mqtt out","name":"EmonCMS","topic":"","broker":"ba386057.845d3","x":785,"y":63.00006103515625,"z":"5e44bf58.8f8e4","wires":[]},{"id":"953b51d6.b87cb8","type":"mqtt in","name":"RFM12 Node 19 IN","topic":"rfm12b/19","broker":"ba386057.845d3","x":307,"y":-20.99993896484375,"z":"5e44bf58.8f8e4","wires":[["31c990f3.676f7"]]},{"id":"31c990f3.676f7","type":"mqtt out","name":"Serversroom Node Raw","topic":"company/serversroom/node/raw","broker":"ba386057.845d3","x":520,"y":-19.99993896484375,"z":"5e44bf58.8f8e4","wires":[]}]

The security for the moment is starting to be implemented only at TCP/IP communication levels using SSL/HTTP(s) connection between IoT Node and the “cloud” data center.

4 Conclusions and Security Issues

A lot of possible applications are showing market potential by deploying a proper IoT infrastructure and architecture for facility buildings supervision solution. An applicable solution with market potential is to use the same IoT (Internet of Things) infrastructure for Real Time Environment Monitoring within Smart Cities systems. The outdoor and indoor sensors deployed within the buildings to have environment sensors for: Wind Speed, Wind Direction, Rainfall, Temperature, Humidity, Barometer, etc., and reports at a configurable amount of time to the data center, in order to have a real time environment monitoring system. Another potential application is to develop a Smart City Sensors Data Map (as a tool to study “smartness” of a city) from university campuses, public network services, institutions buildings, hospitals, etc. sensors, in order to have a better management for: City development (Openness and communality availability of digital services); City Offices and enterprises productivity and security (with fire-detection and other buildings sensors), and Information Technology (IT City infrastructure, know-how and semantic).

Parts from the first and second section of this paper have been published in [TOMA14].

In terms of security, there is a trend in standardization for IoT architectures and infrastructures in the market, to be done by Global Platform through IoT (Internet of Things), TEE (Trusted Execution Environment) and Security committees. The security issues are categorized in terms of the subsystem level involved:
· IoT nodes and sensors – security for communications from sensors for MQTT/CoAP protocols plus the communications with the data center (typically SSL/TLS for HTTP(s) / FTP(s)).
· Temper proof IoT nodes (Common Criteria or FIPS boards) to have optionally a secure element on the board (Java Card and Global Platform specifications implemented for cards and TEE), in order to have authentication, confidentiality, integrity and authorization for reporting data in the back-end cloud servers (not mandatory, but useful in various sensitive systems).
· Back-end security from IDS (Intrusion Detection Systems) / IPS (Intrusion Prevention Systems) to antivirus and web security, in order to avoid data leakage and web oriented attacks (to the web and application servers via REST-JSON or WS-SOAP requests), such as: Cross Site Scripting (XSS), Path Disclosure, Denial of Service, Memory Corruption, Cross Site Request Forgery, Information Disclosure, Local File Include, Remote File Include, Buffer overflow, Other (PHP Injection, Javascript Injection, etc.)

In the future, the team that published this paper will focus on implementing the solutions that solve the security issues from an IoT architecture during research grants phases and university classes.

References:
[1] Top 50 IoT – Internet of Things Sensor Applications:
http://www.libelium.com/top_50_iot_sensor_applications_ranking/
http://www.libelium.com/smart_cities
[2] Editor: Ian G Smith, "The Internet of Things 2012 New Horizons", ISBN hard cover: 978-0-9553707-9-3, published in Halifax, UK, www.internet-of-things-research.eu | IERC – European Research Cluster on the Internet of Things - report on 2012:
http://www.internet-of-things-research.eu/pdf/IERC_Cluster_Book_2012_WEB.pdf
[3] David Boswarthick (Editor), Omar Elloumi (Editor), Olivier Hersent (Editor): M2M Communications: A Systems Approach, WILEY, Publication Date: April 30, 2012 | ISBN-10: 1119994756 | ISBN-13: 978-1119994756 | Edition: 1
[4] Olivier Hersent: The Internet of Things: Key Applications and Protocols, WILEY, Publication Date: February 6, 2012 | ISBN-10: 1119994357 | ISBN-13: 978-1119994350 | Edition: 2
[5] Dieter Uckelmann (Editor), Mark Harrison (Editor), Florian Michahelles (Editor): Architecting the Internet of Things, Springer, Publishing Date: April 3, 2011 | ISBN-10: 3642191568 | ISBN-13: 978-3642191565 | Edition: 2011
[6] Hakima Chaouchi (Editor): The Internet of Things: Connecting Objects (ISTE), WILEY, Publication Date: June 14, 2010 | ISBN-10: 1848211406 | ISBN-13: 978-1848211407 | Edition: 1
[7] Honbo Zhou (Author): The Internet of Things in the Cloud: A Middleware Perspective, CRC Press, Publication Date: October 29, 2012 | ISBN-10: 1439892997 | ISBN-13: 978-1439892992 0
[8] Arduino board: http://www.arduino.cc/
[9] Intel Galileo board: http://www.intel.com/content/www/us/en/do-it-yourself/galileo-maker-quark-board.html | http://arduino.cc/en/ArduinoCertified/IntelGalileo
[10] Raspberry Pi board: http://www.raspberrypi.org/
[11] MQ Telemetry Transport Protocol: http://mqtt.org/
[12] MQTT Protocol Specifications v 3.1: http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/MQTT_V3.1_Protocol_Specific.pdf
[13] MQTT-SN (Sensor Networks) Protocol Specifications v 1.2: http://mqtt.org/new/wp-content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf
[14] Messaging Technologies: http://www.prismtech.com/sites/default/files/documents/MessagingComparsion_190913.pdf
[15] REST Protocol Intro: http://rest.elkstein.org/
[16] REST versus WS comparison from developers perspective: http://vs.inf.ethz.ch/publ/papers/dguinard-rest-vs-ws.pdf
[17] Cristian Toma, “IoT – Internet of Things Architecture for Context Aware Sensors Data Processing in Waste Management Solution”, The 13th International Conference Proceedings on Economic Informatics – IE2014, Bucharest, Romania – www.conferenceie.ase.ro

image1.jpeg
Open Public Clouds

for IoT, M2M meta-models, Elastic/Clot

Computing, etc.
Data Center Layer (Back-End)
ICT Cloud, P2P, Hybrid n-Tier Architectural Patterns and
HTC-HPC Cluster Infrastructure
H)
ivate Cloud
: Processing
¢ Modules
et £ e T GW Privaty
- Micro-Cloud
ensors Context Aware-Layer (Fro d . g 0 8 SW Modules for Math- Intances
oT Gatewa 02.15.4/ 6LOWPA models Computing
with Standard Cloud, SW Modules for
Distributed/p2P and Math-models
o y Parallel Servers Computing with
fddieware over Blustooth, board Mddeware Ql(Smart Object AP + g Distributed
Sensors ;o0 2aaa3/15653/ 18000. g {Smart Object AP + [MNTTeL) REst/sn0 gl Controller - Event- 4% Syst
(Sonar, 1R) X\ " geio /nec,ete. il Controller - Event- varsic gD ven Flow Graphs| H e
[oriven Flow Graphs| Runtime App) Optiite
Humidity 8| Runtime app)
3 E
o T Private Clo Private Elbd\\
9 £ Mobile / Web 81 Business
(i - 2 Portal and App Intelligence
g Server Modules Modules
@ - i Payment &
Billing Gateway CRM = Mariules
8 e Wodules
Notification N o
Services N
@ @ Modules

/w

image2.png
>

info debug
Type matt out

D 62004078 90158
Properties

name ServersroomTemp

topic company/serversroom/temp

broker ba386057 845d3

Connects to a MQTT broker and publishes
msg.payload either to the msg.topic OR
to the topic specified in the edit window.
The value in the edit window has
precedence.

msg.qos and msg.retain may also
optionally have been set. If not set they
are setto 0 and false respectively.

If msg.payload contains a buffer or an
object it will be stringified before being
sent.

